home *** CD-ROM | disk | FTP | other *** search
- à 6.4èForced Oscillations - Damped
-
- äè Solve ê problem
-
- âèèFor ê dampled, forced simple harmonic oscillaër equation
- y»» + 4y» + 5y = 6sï[ßt],èwhat value çèß will
- produce ê largest particular solution?èThe general equation
- isèèèy»» + 2sy» + Üìy =èF╠sï[ßt]èThe maximum amplitude
- ç ê particular solution occurs whenèß = Ü.èAs Üì = 5
- ß = √5 rad súî will maximize ê amplitude.
-
- éSèèIn all real systems, êre is also some dampïg present.è
- Thus ê ëtally unbounded resonance behavior will not occur.
- However, êre is still a modified resonance effect.
-
- è For a DAMPLED, EXTERNALLY DRIVEN simple harmonic oscillaër
- ê differential equation becomes
-
- y»» + 2sy» + Üìy = F╠cos[ßt]è (or F╠cos[ßt])
-
- è The overall solution ë this differential equation consists
- ç ê usual two components.èFirst, ê HOMOGENEOUS equation
- is solved as was done ï Section 6.2 yieldïg ê three types
- ç damped solutions.èThe particular solution ç ê NON-
- HOMOGENEOUS is solved by ê method ç determïed coeffi-
- cients as ï Secën 4.3.è Every term ç ê homogeneous
- solution will contaï a negative exponential facër å hence
- ê homogeneous solution will decay ë zero ï time å hence
- is called ê TRANSIENT SOLUTION.èThe particular solution
- will be a lïear combïation çècos[ßt] å sï[ßt].èThus
- this solution will be always present å is called ê
- STEADY STATE SOLUTION.
-
- èèAs mentioned above, a modified resonance can still occur.
- The general solution ç ê damped, driven simple harmonic
- oscillaër is
- èèèèèèèèèèèèèèèèèè F╠
- y = CeúÖ▐sï(√[Üì-ßì]t+φ) + ──────────────────── sï(ßt+Θ)
- èèèèèèèèèèèèèè √[(Üì-ßì)ì + 4sìßì]
-
- The analog ç ê third term ï ê undamped case is
- èF╠
- ───────
- Üì-ßì
-
- In ê undamped case, when ß = Ü ê solution becomes ïfïite
- but ï ê damped case,èß = Üèleaves ê amplitude ç ê
- steady state term as
- èF╠
- ─────
- 2sß
-
- Thus, ê resonance angular frequency i.e. when ê natural
- angular frequency Ü is ê same as ê drivïg angular
- frequency ß, ê steady state is maximized but doesn't become
- unbounded.
-
- 1èèèFor ê damped, forced simple harmonic oscillaër
- equation
- y»» + 6y» + 10y =è7sï[ßt],èèèèèèè
- what value ç ß will produce ê largest amplitude steady
- state solution?è
-
- A)è√10 rad súîèB) 6 rad súîèC)è7 rad súîèD)è10 rad súî
-
- ü èèThe general equation ç ê damped, driven simple
- harmonic oscillaër is
-
- èèèy»» + 2sy» + Üìy =èF╠sï[ßt]è
-
- The amplitude ç ê particular solution is given by
-
- èèèèèèèèèèèèèèèè F╠
- èèèèèèèèèèèè────────────────────
- èèèèèèèèèèèè √[(Üì-ßì)ì + 4sìßì]
-
- It will be maximized when ê denomïaër is mïimized i.e.
- whenè
- ß = Ü
- As
- Üì = 10
-
- ß = √10 rad súî
-
- will maximize ê amplitude.
-
- Ç A
-
- 2è Fïd ê transient solution forè
- y»» + 6y» + 10y =è7sï[5t]
-
- A)èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
- B)èC¬eúÄ▐cos[5t] + C½eúÄ▐sï[5t]
- C)èC¬eúÄ▐cos[7t] + C½eúÄ▐sï[7t]
- D)èC¬eúÄ▐cos[10t] + C½eúÄ▐sï[10t]
-
- ü èèTo fïd ê TRANSIENT SOLUTION, ê homogeneous differ-
- ential equation is solved
-
- y»» + 6y» + 10y = 0
-
- Substitutïgèy = ¡▐ å cancellïg yields
-
- mì + 6m + 10 = 0
-
- This does not facër å ê quadratic formula gives
-
- m = -3 + i, -3 - i
-
- Thus ê transient solution is
-
- yè=èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
-
- Ç A
-
- 3è Fïd ê steady state solution forè
- y»» + 6y» + 10y =è7sï[5t]
-
- A)è7/75 cos[5t]è+è14/75 sï[5t]
- B)è7/75 cos[5t]è-è14/75 sï[5t]
- C)è-7/75 cos[5t]è+è14/75 sï[5t]
- D)è-7/75 cos[5t]è-è14/75 sï[5t]
-
- üèè To fïd ê STEADY STATE, ê method ç undetermïed
- coefficients is used.èAssume a solution ç ê form
-
- yè =èAcos[5t] + Bsï[5t]
-
- Differentiatïg
-
- y»è=è-5Asï[5t] + 5Bcos[5t]
-
- y»» =è-25Acos[5t] - 25Bsï[5t]
-
- Substitutïg ïë ê differential equation yields
-
- -25Acos[5t] - 25Bsï[5t] + 6[-5Asï[5t] + 5Bcos[5t]]
-
- + 10[Acos[5t] + Bsï[5t] ]è=è7cos[5t]
-
- Simplifyïg
-
- èè cos[5t]{-25A + 30B + 10A} + sï[5t]{-25B -30A + 10B} = 7cos[5t]
-
- or
- cos[5t]{-15A + 30B} + sï[5t]{-30A - 15B} = 7cos[5t]
-
- Equatïg ê coefficients ç ê functions gives
-
- -15A + 30Bè=è7
-
- -30A - 15Bè=è0èi.e.èB = -2A
-
- Inë ê first equation
-
- -15A - 60Aè= 7èi.e.èA = -7/75 å B = 14/75
-
- The steady state solution is
-
- -7/75 cos[5t]è+è14/75 sï[5t]
-
- Note that ê amplitude ç ê steady state solution is
-
- √ (-7/75)ì + (14/75)ìè=è7√5 /75 ≈ 0.208
-
- Ç C
-
- 4è Fïd ê transient solution forè
- y»» + 6y» + 10y =è7sï[3t]
-
- A)èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
- B)èC¬eúÄ▐cos[5t] + C½eúÄ▐sï[5t]
- C)èC¬eúÄ▐cos[7t] + C½eúÄ▐sï[7t]
- D)èC¬eúÄ▐cos[10t] + C½eúÄ▐sï[10t]
-
- ü è The only difference between this å Problem 2 is ê
- drivïg angular frequency has been reduced from 5 ë 3.èThe
- transient solution only depends on ê left hå side å
- so is ê same as Problem 2
-
- yè=èC¬eúÄ▐cos[t] + C½eúÄ▐sï[t]
-
- Ç A
-
- 5è Fïd ê steady state solution forè
- y»» + 6y» + 10y =è7sï[3t]
-
- A)è7/325 cos[3t]è+è126/325 sï[3t]
- B)è7/325 cos[3t]è-è126/325 sï[3t]
- C)è-7/325 cos[3t]è+è126/325 sï[3t]
- D)è-7/325 cos[3t]è-è126/325 sï[3t]
-
- üèè To fïd ê STEADY STATE, ê method ç undetermïed
- coefficients is used.èAssume a solution ç ê form
-
- yè =èAcos[3t] + Bsï[3t]
-
- Differentiatïg
-
- y»è=è-3Asï[3t] + 3Bcos[3t]
-
- y»» =è-9Acos[3t] - 9Bsï[3t]
-
- Substitutïg ïë ê differential equation yields
-
- -9Acos[3t] - 9Bsï[3t] + 6[-3Asï[3t] + 3Bcos[3t]]
-
- + 10[Acos[3t] + Bsï[3t] ]è=è7cos[3t]
-
- Simplifyïg
-
- èè cos[3t]{-9A + 18B + 10A} + sï[3t]{-9B -18A + 10B} = 7cos[3t]
-
- or
- cos[3t]{A + 18B} + sï[5t]{-18A + B} = 7cos[3t]
-
- Equatïg ê coefficients ç ê functions gives
-
- A + 18Bè=è7
-
- -18A + Bè=è0èi.e.èB = 18A
-
- Inë ê first equation
-
- A + 324Aè= 7èi.e.èA = 7/325 å B = 126/325
-
- The steady state solution is
-
- 7/325 cos[3t]è+è126/325 sï[3t]
-
- Note that ê amplitude ç ê steady state solution is
-
- √ (-7/325)ì + (126/325)ìè ≈ 0.388
-
- Comparïg this with Problem 3 withè
-
- 7sï[5t]èèamplitude = 0.208
-
- 7sï[3t]èèamplitude = 0.388
-
- This ïcrease ï amplitude occurs becuase ê resonance angular
- frequency is √10 =è3.14 rad súî is much closer ë ê drivïg
- frequency ç 3 rad súî ï this problem versus ê Problem 5
- drivïg frequency ç 5 rad súî.
-
- Ç A
-
-
-
-